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1 Divisibility

1.1 Notation and concept of divisibility

To denote “a is divisible by b” mathematically, we write b | a. This is read as “b divides
a”. We can also say “b is a divisor/factor of a”, or “a is a multiple of b”.

Similarly, b - a means “b does not divide a”.
We define b | a as follows: let a, b be integers. If there exists some integer x that

a = bx, then we have b | a. Some people add an additional constraint b ̸= 0 in the
definition. (Note: the number 0 is divisible by all integers.)

1.2 Basic properties of divisibility

Here is some properties about divisibility:

(i) If a | b and a | c, then a | mb+ nc for all integers m , n ( e.g. a | b− 2c) ;

(ii) If a | b and b | c, then a | c ;

(iii) If a | b and b | a, then a = b or a = −b .

The proof of property (i) is given below. The rest is left for readers.

Let b = xa and c = ya for some integers x and y.

∵ mb+ nc = m(xa) + n(ya) = (mx+ ny)a

∴ a | mb+ nc for all integers m, n.

Exercise:

1. If n | 4a+ 5b, n | 2a+ 3b, prove that n | b.

2. Prove that if a | b and c | d, then ac | bd.

3. Prove that

(a) If x2 + ax+ b = 0 has an integral root x0 ̸= 0 , then x0 | b.
(b) If xn + an−1x

n−1 + · · ·+ a0 = 0 has an integral root x0 ̸= 0, then x0 | a0.

(Note: the questions above are special cases of the rational root theorem.)

4. Prove that 15 | 24n − 1 for all positive integers n.

5. If 3 | a+ b, prove that 9 | a3 + b3.

6. Given 5 | n and 17 | n, prove that 85 | n.

7. If a, b, n are integers that a | bn, ax+ by = 1 for some integers x, y, prove a | n.

8. Let m be an integer that m > 1. Given m | (m− 1)! + 1, prove that m is a prime
number.
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2 Part 2 Greatest common divisor

2 Greatest common divisor

If m | a and m | b, then m is a common divisor of a and b.
The greatest common divisor (GCD) is the largest positive integer that divides

the numbers, i.e. the largest common divisor. The greatest common divisor of a and b is
denoted (a, b) or gcd(a, b). For example, gcd(8, 12) = 4.

Numbers a and b are co-prime or relatively prime if gcd(a, b) = 1. The least common
multiple (LCM) of a and b, i.e. the smallest positive numbers that is divisible by both
a and b, is denoted [a, b] or lcm(a, b).
Note: a and b can be any integer, including zero and negative numbers.

Theorems related to GCD (proof is left to readers):

(i) (a1, a2) = (−a1, a2)

(ii) If a1 | a2, then (a1, a2) = (a1) = |a1|.
Or more generally, if a1 | aj for j = 2, . . . , k , then (a1, a2, . . . , ak) = (a1) = |a1|;

(iii) For any integer x, we have (a1, a2) = (a1, a2, a1x).
Or more generally, we have (a1, a2, . . . , ak) = (a1, a2, . . . , ak, a1x);

(iv) For any integer x, we have (a1, a2) = (a1, a2 + a1x).
Or more generally, we have (a1, a2, . . . , ak) = (a1, a2 + a1x, . . . , ak);

(v) If p is a prime number, then (p, a1) =

{
p if p | a
1 if p - a

;

(vi) If m | (a1, a2, . . . , ak), then m
(a1
m
,
a2
m
, . . . ,

ak
m

)
= (a1, a2, . . . , ak).

More theorems related to GCD (proof is left to readers):

(i) If c is a common multiple of a1, a2, . . . , ak , then [a1, a2, . . . , ak] | c;

(ii) If d is a common divisor of a1, a2, . . . , ak , then d | [a1, a2, . . . , ak];

(iii) m(a1, a2, . . . , ak) = (ma1,ma2, . . . ,mak);

(iv) (a1, a2, a3 . . . , ak) = ((a1, a2), a3 . . . , ak);

(v) If (m, a) = 1, then (m, ab) = (m, b);

(vi) If (m, a) = 1, m | ab, then m | b;

(vii) [a, b](a, b) = ab;

(viii) There exists integers x1, x2, x3, . . . , xk that (a1, . . . , ak) = a1x1 + · · ·+ akxk,
i.e. (a1, . . . , ak) can be expressed as an integral linear combination of a1, . . . , ak.
(Note: it is impossible for a1x1 + · · ·+ akxk to form a smaller natural number.)
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Example: Given a, b, c are intgers. Prove that if (a, b) = (a, c), then (a, b, c) = (a, b);

Solution: (a, b, c) = ((a, b), c) = ((a, c), c) = (a, c, c) = (a, c) = (a, b)

Alt. solution: We prove that (a, b, c) ≥ (a, b) and (a, b, c) ≤ (a, b). The part
(a, b, c) ≥ (a, b) is given as follows:

Let d = (a, b) = (a, c). Now we have d | a, d | b and d | c, therefore d is a common
divisor of a, b and c. Now (a, b, c) ≥ d = (a, b).

And the part (a, b, c) ≤ (a, b) is left to readers as an exercise.

Example: Prove that (a2, ab, b2) = (a2, b2) for all integers a and b.;

Solution: Let d = (a, b), a = dm, b = dn.

Now (m,n) =
(a, b)

d
= 1. And hence (m,n2) = 1 and then (m2, n2) = 1.

Therefore (a2, b2) = (d2m2, d2n2) = d2(m2, n2) = d2.

Also, (a2, ab, b2) = (a2, ab, ab, b2) = ((a2, ab), (ab, b2)) = (a(a, b), b(a, b))
= (a, b)(a, b) = d2.

Hence the given identity is proved.

Exercise:

1. Given a, b and c are integers. Determine and explain whether the following are
true. (i.e. Give a proof for true, and a counter-example for false.)

(a) If (a, b) = (a, c), then [a, b] = [a, c];
(b) If d | a , d | a2 + b2 , then d | b ;
(c) If a4 | b3, then a | b ;
(d) If a2 | b3, then a | b ;
(e) If a2 | b2, then a | b ;

(f) ab | [a2, b2];
(g) [a2, ab, b2] = [a2, b2];
(h) (a, b, c) = ((a, b), (a, c));
(i) If d | a2 + 1, then d | a4 + 1;
(j) If d | a2 − 1, then d | a4 − 1.

2. Prove that (a, b, c) ≤ (a, b) for integers a, b and c.

3. Prove that (a, b) ≤ (a+ b, a− b) for integers a and b.

4. Give four integers that their GCD is 1, but the GCDs of any three of the numbers
are not 1.

5. (Putnam 2000) Prove that the expression gcd(m,n)

n

(
n

m

)
is an integer for all pairs

of integers n ≥ m ≥ 1.
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4 Part 2 Greatest common divisor

2.1 Euclidean algorithm

Besides listing all divisors and short division, Euclidean algorithm is an effective way
to find the greatest common divisors. The algorithm is as follows (why does it work?):

(a, b) = (b, a mod b) for integers a, b that a ≥ b

(Note: a mod b is the remainder of the division of a by b, i.e. a mod b = a− b
⌊a
b

⌋
)

Example: Find the GCD of 1234 and 567.

Solution: (1234, 567) = (567, 100) = (100, 67) = (67, 33) = (33, 1) = (1, 0) = 1

Example: Find the GCD of 2n− 1 and n− 2, where n is an integer.

Solution: (2n−1, n−2) = (2n−1−2(n−2), n−2) = (3, n−2) =

{
3 if 3 | n− 2

1 if 3 - n− 2

Exercise:

1. Evaluate the following (all unknowns are integers):

(a) (240, 46)

(b) (30, 45, 84)

(c) (2t+ 1, 2t− 1)

(d) (2n, 2(n+ 1))

(e) (kn, k(n+ 2))

(f) (n− 1, n2 + n+ 1)

2.2 Extended Euclidean algorithm

Euclidean algorithm can be modified to calculate the coefficients m, n in the equation
(a, b) = ma+ nb. This is known as the extended Euclidean algorithm.

Example: Find the GCD of 46 and 240, and express the GCD as an integral linear
combination of the given numbers.

Solution:

Division Quotient Remainder x(×240) y(×46)
— — 240 1 0

240÷ 46 5 46 0 1
46÷ 10 4 10 1− 5(0) = 1 0− 5(1) = −5
10÷ 6 1 6 0− 4(1) = −4 1− 4(−5) = 21
6÷ 40 1 4 −4− 1(5) = −9 21− 1(−26) = 47
4÷ 2 2 2 5− 2(−9) = 23 −26− 2(47) = −120

Therefore, (46, 240) = 2 = −9(240) + 47(46).

(Also, 2 = (−9 + 23k)(240) + (47− 120k)(46) for any integer k.)
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Example: (1st IMO (1959) #1)

Prove that the fraction 21n+ 4

14n+ 3
is not reducible for every natural number n.

Solution: (21n+ 4, 14n+ 3) = (7n+ 1, 14n+ 3) = (7n+ 1, 1) = 1

∴ The fraction 21n+ 4

14n+ 3
is not reducible for every natural number n.

Exercise:

1. Find the GCD of the following, and express the GCD as an integral linear combi-
nation of the given numbers:

(a) 206 and 40; (b) 57 and 81; (c) 3456 and 1720.

2. Find the positive integer x having (x, 36) = 6 and [x, 36] = 180.

3. Find integers a, b having a+ b = 192 and [a, b] = 660.
(Jilin Junior Secondary Mathematics Contest 1989)

4. Given (a, b) = 1. Prove the following:

(a) (a+ b, ab) = 1;
(b) (a+ b, a− b) = 1 or 2;
(c) (a+ b, a2 + b2 − ab) = 1 or 3;

5. Prove that (2m − 1, 2n − 1) = 2(m,n) − 1 for all integers m, n.

3 Prime numbers

A prime number is a natural number having exactly two positive divisors, 1 and itself.
Natural numbers greater than 1 which are not primes are composite numbers.

Exercise:

1. Given n is an integer greater than 1. Prove that there exists prime number p
satisfying p | n.

2. Prove that there are infinitely many prime numbers. (Use the result of Q1.)

Notes on Number Theory
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4 Fundamental theorem of arithmetic

The fundamental theorem of arithmetic is that every positive integer greater than 1 has a
prime factorization, i.e. a = p1p2 · · · pn, and the expression is unique if we do not consider
the order of the primes in the expression p1p2 · · · pn.

If we write down the primes in index notation, we obtain
a = pα1

1 pα2
2 · · · pαs

s where p1 < p2 < · · · < ps.
which is known as the canonical representation of a or the standard form of a.

With the prime factorization of numbers, we are able to have the following results:

1. Given a = pα1
1 pα2

2 · · · pαs
s and b = pβ1

1 pβ2

2 · · · pβs
s , then we have

(a) (a, b) = pδ11 p
δ2
2 · · · pδss , where δj = min(αj, βj) for 1 ≤ j ≤ s.

(b) [a, b] = pγ11 pγ22 · · · pγss , where γj = max(αj, βj) for 1 ≤ j ≤ s.

2. If (a, b) = 1, ab = ck, then there exists integers u, v that a = uk, b = vk.

3. Given a = pα1
1 pα2

2 · · · pαs
s , we have

(a) Denote τ(a) (or d(a)) be the number of positive divisors of a.
We have τ(a) = (α1 + 1)(α2 + 1) · · · (αs + 1) = τ(pα1

1 )τ(pα2
2 ) · · · τ(pαs

s );
(b) Denote σ(a) be the sum of positive divisors of a.

We have σ(a) =
pα1+1
1 − 1

p1 − 1
· · · p

αs+1
s − 1

ps − 1
=

s∏
j=1

p
αj+1
j − 1

pj − 1
= σ(pα1

1 ) · · ·σ(pαs
s ).

4. τ(1) = σ(1) = 1. Note that 1 does not have a prime factorization.

Example: Find the number and the sum of positive divisors of 720.

Solution:

∵ 720 = 24 · 32 · 5

∴ τ(720) = (4 + 1)(2 + 1)(1 + 1) = 30,

σ(720) =
25 − 1

2− 1
· 3

3 − 1

3− 1
· 5

2 − 1

5− 1
= 31 · 13 · 6 = 2418.

Example: Find
∑
d|a

1

d
. (Note: d takes the values of all positive divisors of a.)

Solution:
∑
d|a

1

d
=

∑
d|a

1
a
d

=
1

a

∑
d|a

d =
1

a
σ(a).
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Exercise:

1. Find the number of positive divisors of 1200.

2. Find the sum of the positive divisors of 60.

3. Find the least possible number n that τ(n) = 6

4. Find all possible values of n that τ(n) is an odd number.

5. Prove that (a, b, c)(ab, bc, ca) = (a, b)(b, c)(c, a).

6. Prove that (a, [b, c]) = [(a, b), (a, c)].

7. Given g | ab, g | cd and g | ab+ cd, prove g | ac and g | bd.

8. Given a, b, n are positive integers that a > b. Prove that if n | an − bn, then

n

∣∣∣∣an − bn

a− b
.

9. Prove that
∏
d|n

d = n
τ(n)
2 .

10. Prove that n is a prime number if and only if τ(n) = n+ 1.

11. (39th IMO(1998) #3) For any positive integer n, let d(n) denote the number of
positive divisors of n (including 1 and n itself). Determine all positive integers k
such that d(n2)/d(n) = k for some n.

12. (38th IMO(1997) #5) Find all pairs (a, b) of integers a, b ≥ 1 that satisfy the
equation ab

2
= ba.

Notes on Number Theory
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5 Congruence Relation

For integers a, b, m, m ̸= 0, if m | (a − b), i.e. a − b = km for some integer k, then a
and b are congruent modulo m, written as a ≡ b (mod m). Otherwise a and b are not
congruent modulo m, written as a ̸≡ b (mod m).

Note that m | (a−b) ⇔ −m | (a−b), therefore a ≡ b (mod m) ⇔ a ≡ b (mod (−m)).
For convenience, we always take m to be positive.

The statement a ≡ b (mod m) means a and b have the same remainder when they
are divided by m. However, there are a few different definitions of remainders. Given
a = mq + r, where m is the divisor, q is the quotient and r is the remainder, we can
define r in a few ways:

• 0 ≤ r < m, i.e. r is the least non-negative remainder.
In this case, we have a mod b = a− b

⌊
a
b

⌋
.

• −m/2 < r ≤ m/2, i.e. r is the absolute least remainder.

• 1 ≤ r < m, i.e. r is the least positive remainder.

•
{
0 ≤ r < m for a ≥ 0

−m < r ≤ 0 if a < 0
. This is how computers perform modulo operations.

Here are a few properties of congruence relations:

(i) If a ≡ b (mod m), c ≡ d (mod m), then a+ c ≡ b+ d (mod m) and
ac ≡ bd (mod m). (Note: subtraction is also okay, but division is not!)

(ii) If a ≡ b (mod m), f(x) is an integral polynomial function
(i.e. f(x) = a0 + a1x + a2x

2 + · · · + anx
n, where a0, a1, . . . , an are integers), then

f(a) ≡ f(b) (mod m).

(iii) If a ≡ b (mod m), f(x) = a0 + a1x + · · · + anx
n, g(x) = b0 + b1x + · · · + bnx

n are
two integral polynomial functions, aj = bj for 0 ≤ j ≤ n, then we have
f(a) ≡ g(b) (mod m). Special case: f(a) ≡ g(a) (mod m).
(If aj = bj for 0 ≤ j ≤ n, we can denote f(x) ≡ g(x) (mod m).)

(iv) If a ≡ b (mod m), d | m, then a ≡ b (mod d).

(v) a ≡ b (mod m) is equivalent to ka ≡ kb (mod |k|m), where k is an integer.

(vi) ka ≡ kb (mod m) is equivalent to a ≡ b (mod m
(k,m)

), where k is an integer.

(Special case: if (k,m) = 1, then ka ≡ kb (mod m) ⇔ a ≡ b (mod m).)

(vii) a ≡ b (mod mj) for 1 ≤ j ≤ n, then a ≡ b (mod [m1,m2, . . . ,mj]).
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Pitfalls: note that the following are NOT true:

× If a = b (mod m), c = d (mod m), then ac = bd (mod m).

× If ka = kb (mod m), a = b (mod m) (true only if (k,m) = 1).

We also define the inverse of a number modulo m as follows:

If (a,m) = 1, ac ≡ 1 (mod m), then c is an inverse of a modulo m. This is denoted
as a−1 (mod m) or a−1. For example, we can find the inverses modulo 7 and 12 below:

a (mod 7) 1 2 3 4 5 6
a−1 (mod 7) 1 4 5 2 3 6

a (mod 12) 1 5 7 11
a−1 (mod 12) 1 5 7 11

Here are a few properties of inverses:

(i) If c1 and c2 are two inverses of a, then c1 ≡ c2 (mod m);

(ii) (a−1)−1 ≡ a (mod m);

(iii) (a−1,m) = 1.

Example: Find the (least non-negative) remainder of 10111 divided by 11.

Solution: 10111 ≡ 211 = (25)2 × 2 = 322 × 2 ≡ (−1)2 × 2 = 2 (mod 11)

Example: Find the last two digits of 3406.

Solution:

We have 32 = 9 ≡ 1 (mod 4). Therefore 3406 = (32)203 ≡ 1 (mod 4).

Also, 33 = 27 ≡ 2 (mod 25), 34 = 33 × 3 ≡ 2× 3 = 6 (mod 25),
310 = 34 × (33)2 ≡ 6× 22 ≡ −1 (mod 25), 320 = (310)2 ≡ (−1)2 = 1 (mod 25)

Therefore, 3406 = (320)20 × (33)2 ≡ 1× 22 = 4 (mod 25)

Consider 3406 ≡ 1 ≡ 29 (mod 4), 3406 ≡ 4 ≡ 29 (mod 25),
we have 3406 ≡ 29 (mod 100)

i.e. The unit digit is 9, and the tens digit is 2. (Alternatively, we can find the number
modulo 100 directly, but the numbers are larger.)

Example: Given x, y are integers. Show that x2 + y2 = 2011 has no solution.

Solution: 2011 ≡ 3 (mod 4). However, x2 ≡ 0 or 1 (mod 4) (why?), so it is impos-
sible to have x2 + y2 ≡ 3 (mod 4). Hence the given equation has no solution.

Notes on Number Theory



10 Part 5 Congruence Relation

Exercise:

1. Find the least non-negative remainder of 2400 modulo 10.

2. Find the last two digits of 21000 and 99
99 . (Hint: 910 ≡ 1 (mod 100))

3. Find the least non-negative remainder of (1348156 − 77)28 divided by 111.

4. Prove that 70! ≡ 61! (mod 71).

5. Find the least non-negative remainder of 22k modulo 10, where k ≥ 2.

6. Solve


n ≡ 2 (mod 3)
n ≡ 3 (mod 4)
n ≡ 4 (mod 5)

.

7. Given n is an integer. Prove the following. (You may choose to use or not to use
congruence relations.)

(a) 6 | n(n+ 1)(n+ 2);
(b) 8 | n(n+ 1)(n+ 2)(n+ 3);
(c) If 2 - n, then 8 | n2 − 1 and

24 | n(n2 − 1);

(d) 6 | n3 − n;

(e) 30 | n5 − n;

(f) 1

5
n5 +

1

3
n3 +

7

15
n is an integer.

8. Show that there are no integral solution to the following equations.

(a) x2 − 2y2 = 77; (b) x2 − 3y2 + 5z2 = 0.

9. (6th IMO (1964) #1)

(a) Find all positive integers n for which 2n − 1 is divisible by 7;
(b) Prove that there is no positive integers n for which 2n + 1 is divisible by 7.

10. Derive divisibility check algorithms for positive divisors below 100. Provide neces-
sary proofs. For example, the divisibility of the number anan−1 · · · a1a0 by 7 can be
determined by the following methods:

(a) Find n = a2a1a0 − a5a4a3 + · · · and check if 7 | n;
(b) Use f(anan−1 · · · a1a0) = anan−1 · · · a1 − 2a0 and check if 7 | f ;

(Apply f recursively.)
(c) Use g(anan−1 · · · a1a0) = 3an · 10n−1 + an−1 · · · a1a0 and check if 7 | g.

11. Given p is a prime, x, k are integers, k ≥ 0. Prove that (1 + x)p ≡ 1 + xp (mod p)
and (1 + x)p

k ≡ 1 + xpk (mod p).

12. Find the possible values of m for the following:

(a) 32 ≡ 11 (mod m);
(b) 1000 ≡ −1 (mod m);

(c) 28 ≡ 1 (mod m).

Prepared by Leung W.C.



5.1 Residue systems 11

13. If a ≡ b (mod m), c ≡ d (mod m), find the maximum possible value of m in terms
of a, b, c, and d.

14. Determine and explain whether the following are true.
(All unknowns are integers except otherwise stated.)

(a) If a2 ≡ b2 (mod m), then a ≡ b (mod m);
(b) If a2 ≡ b2 (mod m), then a ≡ b (mod m) or a ≡ −b (mod m);
(c) If a ≡ b (mod m), then a2 ≡ b2 (mod m2);
(d) If a ≡ b (mod 2), then a2 ≡ b2 (mod 22);
(e) If p is an odd prime, p - a, the necessary and sufficient conditions of

a2 ≡ b2 (mod p) is a ≡ b (mod p) or a ≡ −b (mod p) exclusively (exactly one
of them is true);

(f) Given (a,m) = 1, k ≥ 1. If ak ≡ bk (mod m) and ak+1 ≡ bk+1 (mod m), then
a ≡ b (mod m).

15. Given p is a prime, p - a, k ≥ 1. Prove n2 ≡ an (mod pk) if and only if
n ≡ 0 (mod pk) and n ≡ a (mod pk).

16. Find all positive integers a, b, c that satisfy the following conditions: a ≡ b (mod c),
b ≡ c (mod a), c ≡ a (mod b).

17. (17th IMO (1975) #4) When 44444444 is written in decimal notation, the sum of its
digits is A. Let B be the sum of the digits of A. Find the sum of the digits of B.
(A and B are written in decimal notation.)

18. (25th IMO (1984) #2) Find one pair of positive integers a and b such that:

(i) ab(a+ b) is not divisible by 7;
(ii) (a+ b)7 − a7 − b7 is divisible by 77.

Justify your answers.

5.1 Residue systems

A set of m integers, no two of which are congruent modulo m, is called a complete
residue system modulo m.

The set of integers {0, 1, . . . ,m− 1} is called the least residue system modulo m.
A set of integers {r1, r2, . . . , rt} is a reduced residue system modulo m if

(i) (rj,m) = 1 for all 1 ≤ j ≤ t;

(ii) ri ̸≡ rj (mod m) if i ̸= j;

(iii) Given (a,m) = 1, then a ≡ rk (mod m) for some integer k.

For example, for m = 12, a complete residue system is {0, 1, 2, . . . , 11}, and a reduced
residue system is {1, 5, 7, 11}.
(Note: Instead of checking of criterion (iii), we can check that the set has the same
number of elements as a known reduced residue system. Why?)

Notes on Number Theory
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Exercise:

1. Prove that if (a,m) = 1, {r1, r2, . . . , rt} is a reduced residue system modulo m, then
{ar1, ar2, . . . , art} is also a reduced residue system modulo m.

5.2 Euler’s totient function

Euler’s totient function, denoted as φ(n), is the number of elements in a reduced residue
system modulo n. (Note: φ(1) = 1)

If n has a prime factorization n = pα1
1 pα2

2 · · · pαs
s , then we have

φ(n) = n

(
1− 1

p1

)(
1− 1

p2

)
· · ·

(
1− 1

pn

)
If n = ab, (a, b) = 1, we have φ(n) = φ(a)φ(b). Therefore, we have

φ(n) = φ(pα1
1 )φ(pα2

2 ) · · ·φ(pαs
s )

Example: Find φ(576)

Solution: 576 = 2632. Therefore φ(576) = 576

(
1− 1

2

)(
1− 1

3

)
= 192.

5.3 Fermat’s little theorem

Fermat’s little theorem states that

• If a is an integer, p is a prime, then ap ≡ a (mod p).

• Special case: if p - a, then ap−1 ≡ 1 (mod p).

5.4 Euler’s theorem

Euler’s theorem states that

• If (a, n) = 1, then aφ(n) ≡ 1 (mod n), where φ(n) is the Euler’s totient function.

• Note that Fermat’s little theorem is a special case of Euler’s theorem.

Proof: Let a, n be integers that (a, n) = 1, {r1, r2, . . . , rφ(n)} be a reduced residue
system modulo n, then {ar1, ar2, . . . , arφ(n)} is a reduced residue system modulo n.

Now we have
ar1ar2 · · · arφ(n) ≡ r1r2 · · · rφ(n) (mod n)

Since (rj, n) = 1 for 1 ≤ j ≤ n, therefore we have
aφ(n) ≡ 1 (mod n)

Prepared by Leung W.C.



5.4 Euler’s theorem 13

Exercise:

1. Given d is an integer, d ≥ 3. Prove that for each d, there exists an infinite number
of integers n satisfying d - φ(n).

2. Prove that

(a) φ(mn) = (m,n)φ([m,n]);
(b) φ(mn)φ((m,n)) = (m,n)φ(m)φ(n);
(c) If (m,n) > 1, then φ(mn) > φ(m)φ(n).

3. Find all integers n that φ(n) = 24.

4. Find all integers n that φ(n) = 26.

5. Find all integers n that

(a) φ(n) = φ(2n) (b) φ(2n) = φ(3n) (c) φ(3n) = φ(4n)

6. Given q is a rational number. Prove that for each q, there exist integers m, n that
satisfy q =

φ(m)

φ(n)
.

7. Prove that for all integers k, there exists some integer n that φ(n) = φ(n+ k).

8. Find all integers n that satisfy φ(n) | n.

9. Prove that
∑
d|m

φ(d) =
∑
d|m

φ(
m

d
) = m.

10. Given p is a prime number. If ap ≡ bp (mod p), prove that ap ≡ bp (mod p2).

Notes on Number Theory
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